TSTP Solution File: SEV055^5 by Duper---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Duper---1.0
% Problem  : SEV055^5 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : duper %s

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 19:24:09 EDT 2023

% Result   : Theorem 4.15s 4.30s
% Output   : Proof 4.15s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem    : SEV055^5 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.13  % Command    : duper %s
% 0.14/0.34  % Computer : n011.cluster.edu
% 0.14/0.34  % Model    : x86_64 x86_64
% 0.14/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.34  % Memory   : 8042.1875MB
% 0.14/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.34  % CPULimit   : 300
% 0.14/0.34  % WCLimit    : 300
% 0.14/0.34  % DateTime   : Thu Aug 24 02:31:22 EDT 2023
% 0.14/0.34  % CPUTime    : 
% 4.15/4.30  SZS status Theorem for theBenchmark.p
% 4.15/4.30  SZS output start Proof for theBenchmark.p
% 4.15/4.30  Clause #0 (by assumption #[]): Eq
% 4.15/4.30    (Not
% 4.15/4.30      (∀ (R : a → a → Prop) (U : (a → Prop) → a),
% 4.15/4.30        And (∀ (Xx Xy Xz : a), And (R Xx Xy) (R Xy Xz) → R Xx Xz)
% 4.15/4.30            (∀ (Xs : a → Prop),
% 4.15/4.30              And (∀ (Xz : a), Xs Xz → R Xz (U Xs)) (∀ (Xj : a), (∀ (Xk : a), Xs Xk → R Xk Xj) → R (U Xs) Xj)) →
% 4.15/4.30          ∀ (Xf : a → a), (∀ (Xx Xy : a), R Xx Xy → R (Xf Xx) (Xf Xy)) → Exists fun Xw => R Xw (Xf Xw)))
% 4.15/4.30    True
% 4.15/4.30  Clause #1 (by clausification #[0]): Eq
% 4.15/4.30    (∀ (R : a → a → Prop) (U : (a → Prop) → a),
% 4.15/4.30      And (∀ (Xx Xy Xz : a), And (R Xx Xy) (R Xy Xz) → R Xx Xz)
% 4.15/4.30          (∀ (Xs : a → Prop),
% 4.15/4.30            And (∀ (Xz : a), Xs Xz → R Xz (U Xs)) (∀ (Xj : a), (∀ (Xk : a), Xs Xk → R Xk Xj) → R (U Xs) Xj)) →
% 4.15/4.30        ∀ (Xf : a → a), (∀ (Xx Xy : a), R Xx Xy → R (Xf Xx) (Xf Xy)) → Exists fun Xw => R Xw (Xf Xw))
% 4.15/4.30    False
% 4.15/4.30  Clause #2 (by clausification #[1]): ∀ (a_1 : a → a → Prop),
% 4.15/4.30    Eq
% 4.15/4.30      (Not
% 4.15/4.30        (∀ (U : (a → Prop) → a),
% 4.15/4.30          And (∀ (Xx Xy Xz : a), And (skS.0 0 a_1 Xx Xy) (skS.0 0 a_1 Xy Xz) → skS.0 0 a_1 Xx Xz)
% 4.15/4.30              (∀ (Xs : a → Prop),
% 4.15/4.30                And (∀ (Xz : a), Xs Xz → skS.0 0 a_1 Xz (U Xs))
% 4.15/4.30                  (∀ (Xj : a), (∀ (Xk : a), Xs Xk → skS.0 0 a_1 Xk Xj) → skS.0 0 a_1 (U Xs) Xj)) →
% 4.15/4.30            ∀ (Xf : a → a),
% 4.15/4.30              (∀ (Xx Xy : a), skS.0 0 a_1 Xx Xy → skS.0 0 a_1 (Xf Xx) (Xf Xy)) → Exists fun Xw => skS.0 0 a_1 Xw (Xf Xw)))
% 4.15/4.30      True
% 4.15/4.30  Clause #3 (by clausification #[2]): ∀ (a_1 : a → a → Prop),
% 4.15/4.30    Eq
% 4.15/4.30      (∀ (U : (a → Prop) → a),
% 4.15/4.30        And (∀ (Xx Xy Xz : a), And (skS.0 0 a_1 Xx Xy) (skS.0 0 a_1 Xy Xz) → skS.0 0 a_1 Xx Xz)
% 4.15/4.30            (∀ (Xs : a → Prop),
% 4.15/4.30              And (∀ (Xz : a), Xs Xz → skS.0 0 a_1 Xz (U Xs))
% 4.15/4.30                (∀ (Xj : a), (∀ (Xk : a), Xs Xk → skS.0 0 a_1 Xk Xj) → skS.0 0 a_1 (U Xs) Xj)) →
% 4.15/4.30          ∀ (Xf : a → a),
% 4.15/4.30            (∀ (Xx Xy : a), skS.0 0 a_1 Xx Xy → skS.0 0 a_1 (Xf Xx) (Xf Xy)) → Exists fun Xw => skS.0 0 a_1 Xw (Xf Xw))
% 4.15/4.30      False
% 4.15/4.30  Clause #4 (by clausification #[3]): ∀ (a_1 : a → a → Prop) (a_2 : (a → Prop) → a),
% 4.15/4.30    Eq
% 4.15/4.30      (Not
% 4.15/4.30        (And (∀ (Xx Xy Xz : a), And (skS.0 0 a_1 Xx Xy) (skS.0 0 a_1 Xy Xz) → skS.0 0 a_1 Xx Xz)
% 4.15/4.30            (∀ (Xs : a → Prop),
% 4.15/4.30              And (∀ (Xz : a), Xs Xz → skS.0 0 a_1 Xz (skS.0 1 a_1 a_2 Xs))
% 4.15/4.30                (∀ (Xj : a), (∀ (Xk : a), Xs Xk → skS.0 0 a_1 Xk Xj) → skS.0 0 a_1 (skS.0 1 a_1 a_2 Xs) Xj)) →
% 4.15/4.30          ∀ (Xf : a → a),
% 4.15/4.30            (∀ (Xx Xy : a), skS.0 0 a_1 Xx Xy → skS.0 0 a_1 (Xf Xx) (Xf Xy)) → Exists fun Xw => skS.0 0 a_1 Xw (Xf Xw)))
% 4.15/4.30      True
% 4.15/4.30  Clause #5 (by clausification #[4]): ∀ (a_1 : a → a → Prop) (a_2 : (a → Prop) → a),
% 4.15/4.30    Eq
% 4.15/4.30      (And (∀ (Xx Xy Xz : a), And (skS.0 0 a_1 Xx Xy) (skS.0 0 a_1 Xy Xz) → skS.0 0 a_1 Xx Xz)
% 4.15/4.30          (∀ (Xs : a → Prop),
% 4.15/4.30            And (∀ (Xz : a), Xs Xz → skS.0 0 a_1 Xz (skS.0 1 a_1 a_2 Xs))
% 4.15/4.30              (∀ (Xj : a), (∀ (Xk : a), Xs Xk → skS.0 0 a_1 Xk Xj) → skS.0 0 a_1 (skS.0 1 a_1 a_2 Xs) Xj)) →
% 4.15/4.30        ∀ (Xf : a → a),
% 4.15/4.30          (∀ (Xx Xy : a), skS.0 0 a_1 Xx Xy → skS.0 0 a_1 (Xf Xx) (Xf Xy)) → Exists fun Xw => skS.0 0 a_1 Xw (Xf Xw))
% 4.15/4.30      False
% 4.15/4.30  Clause #6 (by clausification #[5]): ∀ (a_1 : a → a → Prop) (a_2 : (a → Prop) → a),
% 4.15/4.30    Eq
% 4.15/4.30      (And (∀ (Xx Xy Xz : a), And (skS.0 0 a_1 Xx Xy) (skS.0 0 a_1 Xy Xz) → skS.0 0 a_1 Xx Xz)
% 4.15/4.30        (∀ (Xs : a → Prop),
% 4.15/4.30          And (∀ (Xz : a), Xs Xz → skS.0 0 a_1 Xz (skS.0 1 a_1 a_2 Xs))
% 4.15/4.30            (∀ (Xj : a), (∀ (Xk : a), Xs Xk → skS.0 0 a_1 Xk Xj) → skS.0 0 a_1 (skS.0 1 a_1 a_2 Xs) Xj)))
% 4.15/4.30      True
% 4.15/4.30  Clause #7 (by clausification #[5]): ∀ (a_1 : a → a → Prop),
% 4.15/4.30    Eq
% 4.15/4.30      (∀ (Xf : a → a),
% 4.15/4.30        (∀ (Xx Xy : a), skS.0 0 a_1 Xx Xy → skS.0 0 a_1 (Xf Xx) (Xf Xy)) → Exists fun Xw => skS.0 0 a_1 Xw (Xf Xw))
% 4.15/4.30      False
% 4.15/4.30  Clause #8 (by clausification #[6]): ∀ (a_1 : a → a → Prop) (a_2 : (a → Prop) → a),
% 4.15/4.30    Eq
% 4.15/4.30      (∀ (Xs : a → Prop),
% 4.15/4.30        And (∀ (Xz : a), Xs Xz → skS.0 0 a_1 Xz (skS.0 1 a_1 a_2 Xs))
% 4.15/4.32          (∀ (Xj : a), (∀ (Xk : a), Xs Xk → skS.0 0 a_1 Xk Xj) → skS.0 0 a_1 (skS.0 1 a_1 a_2 Xs) Xj))
% 4.15/4.32      True
% 4.15/4.32  Clause #10 (by clausification #[8]): ∀ (a_1 : a → Prop) (a_2 : a → a → Prop) (a_3 : (a → Prop) → a),
% 4.15/4.32    Eq
% 4.15/4.32      (And (∀ (Xz : a), a_1 Xz → skS.0 0 a_2 Xz (skS.0 1 a_2 a_3 a_1))
% 4.15/4.32        (∀ (Xj : a), (∀ (Xk : a), a_1 Xk → skS.0 0 a_2 Xk Xj) → skS.0 0 a_2 (skS.0 1 a_2 a_3 a_1) Xj))
% 4.15/4.32      True
% 4.15/4.32  Clause #11 (by clausification #[10]): ∀ (a_1 : a → Prop) (a_2 : a → a → Prop) (a_3 : (a → Prop) → a),
% 4.15/4.32    Eq (∀ (Xj : a), (∀ (Xk : a), a_1 Xk → skS.0 0 a_2 Xk Xj) → skS.0 0 a_2 (skS.0 1 a_2 a_3 a_1) Xj) True
% 4.15/4.32  Clause #13 (by clausification #[11]): ∀ (a_1 : a → Prop) (a_2 : a → a → Prop) (a_3 : a) (a_4 : (a → Prop) → a),
% 4.15/4.32    Eq ((∀ (Xk : a), a_1 Xk → skS.0 0 a_2 Xk a_3) → skS.0 0 a_2 (skS.0 1 a_2 a_4 a_1) a_3) True
% 4.15/4.32  Clause #14 (by clausification #[13]): ∀ (a_1 : a → Prop) (a_2 : a → a → Prop) (a_3 : a) (a_4 : (a → Prop) → a),
% 4.15/4.32    Or (Eq (∀ (Xk : a), a_1 Xk → skS.0 0 a_2 Xk a_3) False) (Eq (skS.0 0 a_2 (skS.0 1 a_2 a_4 a_1) a_3) True)
% 4.15/4.32  Clause #15 (by clausification #[14]): ∀ (a_1 : a → a → Prop) (a_2 : (a → Prop) → a) (a_3 : a → Prop) (a_4 a_5 : a),
% 4.15/4.32    Or (Eq (skS.0 0 a_1 (skS.0 1 a_1 a_2 a_3) a_4) True)
% 4.15/4.32      (Eq (Not (a_3 (skS.0 2 a_3 a_1 a_4 a_5) → skS.0 0 a_1 (skS.0 2 a_3 a_1 a_4 a_5) a_4)) True)
% 4.15/4.32  Clause #16 (by clausification #[15]): ∀ (a_1 : a → a → Prop) (a_2 : (a → Prop) → a) (a_3 : a → Prop) (a_4 a_5 : a),
% 4.15/4.32    Or (Eq (skS.0 0 a_1 (skS.0 1 a_1 a_2 a_3) a_4) True)
% 4.15/4.32      (Eq (a_3 (skS.0 2 a_3 a_1 a_4 a_5) → skS.0 0 a_1 (skS.0 2 a_3 a_1 a_4 a_5) a_4) False)
% 4.15/4.32  Clause #17 (by clausification #[16]): ∀ (a_1 : a → a → Prop) (a_2 : (a → Prop) → a) (a_3 : a → Prop) (a_4 a_5 : a),
% 4.15/4.32    Or (Eq (skS.0 0 a_1 (skS.0 1 a_1 a_2 a_3) a_4) True) (Eq (a_3 (skS.0 2 a_3 a_1 a_4 a_5)) True)
% 4.15/4.32  Clause #51 (by clausification #[7]): ∀ (a_1 : a → a → Prop) (a_2 : a → a),
% 4.15/4.32    Eq
% 4.15/4.32      (Not
% 4.15/4.32        ((∀ (Xx Xy : a), skS.0 0 a_1 Xx Xy → skS.0 0 a_1 (skS.0 3 a_1 a_2 Xx) (skS.0 3 a_1 a_2 Xy)) →
% 4.15/4.32          Exists fun Xw => skS.0 0 a_1 Xw (skS.0 3 a_1 a_2 Xw)))
% 4.15/4.32      True
% 4.15/4.32  Clause #52 (by clausification #[51]): ∀ (a_1 : a → a → Prop) (a_2 : a → a),
% 4.15/4.32    Eq
% 4.15/4.32      ((∀ (Xx Xy : a), skS.0 0 a_1 Xx Xy → skS.0 0 a_1 (skS.0 3 a_1 a_2 Xx) (skS.0 3 a_1 a_2 Xy)) →
% 4.15/4.32        Exists fun Xw => skS.0 0 a_1 Xw (skS.0 3 a_1 a_2 Xw))
% 4.15/4.32      False
% 4.15/4.32  Clause #54 (by clausification #[52]): ∀ (a_1 : a → a → Prop) (a_2 : a → a), Eq (Exists fun Xw => skS.0 0 a_1 Xw (skS.0 3 a_1 a_2 Xw)) False
% 4.15/4.32  Clause #73 (by clausification #[54]): ∀ (a_1 : a → a → Prop) (a_2 : a) (a_3 : a → a), Eq (skS.0 0 a_1 a_2 (skS.0 3 a_1 a_3 a_2)) False
% 4.15/4.32  Clause #75 (by fluidSup #[73, 17]): ∀ (a_1 : a → a → Prop) (a_2 : (a → Prop) → a) (a_3 : Prop) (a_4 : a),
% 4.15/4.32    Or (Eq (skS.0 0 a_1 (skS.0 1 a_1 a_2 fun x => a_3) a_4) True) (Eq ((fun _ => a_3) False) True)
% 4.15/4.32  Clause #84 (by betaEtaReduce #[75]): ∀ (a_1 : a → a → Prop) (a_2 : (a → Prop) → a) (a_3 : Prop) (a_4 : a),
% 4.15/4.32    Or (Eq (skS.0 0 a_1 (skS.0 1 a_1 a_2 fun x => a_3) a_4) True) (Eq a_3 True)
% 4.15/4.32  Clause #85 (by superposition #[84, 73]): ∀ (a : Prop), Or (Eq a True) (Eq True False)
% 4.15/4.32  Clause #124 (by clausification #[85]): ∀ (a : Prop), Eq a True
% 4.15/4.32  Clause #126 (by falseElim #[124]): False
% 4.15/4.32  SZS output end Proof for theBenchmark.p
%------------------------------------------------------------------------------